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Abstract—Prediction based on observed data is one of the
major purposes in (big) data analytics, and has shown great
impacts in many applications, including engineering, social
science, and medical treatments. Statistical machine learning
has been widely adopted to deal with such problem. In this
paper, we analogize the relationship among data variables as
a sort of generalized social network [1], that is, networked data.
Consequently, a direct causal relationship from one data variable
to another is thus equivalent to information transfer over a
communication channel. Prediction based on data variables is
consequently to maximize utilizations of information conveyed
over communication channels. Therefore, we introduce the con-
cept of adaptive equalization to data analytics in this paper,
which allows us to select appropriate data variables and optimum
depth of observations for prediction. We illustrate by finance
market data to show surprisingly good performance using this
simple methodology. This result not only indicates a new direction
to knowledge discovery and inference in big networked data
analytics based on communication theory, but also shows the
consistency with the newly developed information coupling.

Index Terms—Statistical communication theory, networked
data, data analytics, communication channel, equalizer, receiver
diversity, knowledge discovery.

I. INTRODUCTION

DATA nalysis is an emerging technology involving statis-
tics, optimization, and computer science; one of the

most promising approaches of data modeling is the networked
data, which has a close relationship with social networks
and thus communication networks. The concept of networked
data, i.e., linking data together to form a network by their
mutual relationship, is equivalent to the model of social
networks. It has been addressed that the general structure of
social networks is equivalent to the communication networks
[1]. Therefore, one can expect that the signal processing
and communication theory can bring us more insights and
opportunities for networked data analysis.

The key to relate data model and social/communication
networks is the channel. In modeling of data, each attribute
(feature) is represented by a random variable, then embedded
into a network by a node. An arbitrary pair of variables
(nodes) are linked together via their statistical dependency.
Furthermore, we can extend each random variable into a
stochastic process by considering their evolution and dynamics
in time. Such relationship is consistent with the definition of
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communication channel [2], i.e., a sequence of conditional
probabilities. Therefore, a correspondence from data analysis
to statistical communication theory can be established, and
many fundamental limits can be understood and explained
from the knowledge of communication networks.

In this paper, we address networked data prediction in the
viewpoint of communication theory. A sequence of observed
data point (observations) is given, and the objective is to
predict a future outcome of a related variable (target). This
task can be regarded as an information transfer over the
communication channel with the target and observations taken
as the information transmitter and the information receiver,
respectively. The information transfer is surely under noisy
distortion, and it is well known to use equalization to optimize
the reception. Therefore, we are motivated to explore the data
prediction optimized by the adaptive equalization, which is
similar to the linear estimation, but allows the adaptation to the
time-varying circumstance. Moreover, the multi-source predic-
tion is equivalent to the single-input multiple-output (SIMO)
communications, in which the receiver diversity techniques
can be directly applied. The idea proposed in this paper is
verified by an experiment of prediction of stock prices in the
financial market. The result not only motivates us a novel
viewpoint on the knowledge discovery [3], but also shows a
consistency with the information coupling from the frontier of
information theory [4].

There are a lot of literature touched the networked data anal-
ysis from different aspects. The idea of information transfer
can be traced back in [5] and related works of the analysis in
time series. Authors in [6] proposed the using of compressed
sensing to process relational data. Besides, the constrained
learning and estimation in networks were addressed in [7], and
the decision and inference of networked data via local network
topology was considered in [8]. Also, there were recent works
discussing the signal processing over graphs on big data
[9], and the knowledge discovery in databases [10]. On the
shoulder of these excellent researches of networked data, we
first relate the data analysis with social and communication
networks, and provide a novel insight on data processing.

In this paper, we model a general data analysis by the com-
munication channel first, and then the fundamental knowledge
of liner predictors is provided through information transfer.
The techniques of receiver diversity is introduced later to solve
the multi-source prediction. We also present a selection crite-
rion based on the information transfer. Finally, an experiment
of stock price prediction is demonstrated and discussed.
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II. PROBLEM FORMULATION

A novel explanation of data prediction in the viewpoint
of communication theory is provided in this section. Our
work is based on the observation that large datasets have a
distributional basis; i.e., there exists an underlying (sometime
implicit) statistical model for the data. We formulate the data
prediction as the following.

A. Model for Data

Our proposed model for data focuses on data generated from
a large system composed of many interacting units. Each unit
is capable of generating data continuously or sporadically with
time. Therefore, the dataset D generated by such system is
modeled by a family of stochastic processes

D ,
{
{X(i),t}t∈I : i = 1, 2, . . .

}
, (1)

where I is a proper index set corresponding to the scenario
we are interested in. In this paper, we only consider the
case of discrete time; i.e., I = N. We write {X(i),t} as
{X(i),t}t∈N for simplicity. Furthermore, we use [Xi]

b
a =

[X(i),a, X(i),a+1, . . . , X(i),b] to denote an sub-sequence of
stochastic process {X(i),t}. In the following, we start from a
simplified case to give a glimpse of communication theoretic
prediction of networked data.

B. Data Analysis via Communication Channels

Consider D = {{Xt}, {Yt}} only. Given a time instance n,
the problem of prediction is stated as follow:

Problem 1. Suppose we have two random sequences, {Xt},
{Yt}. We observe {Xt} in some set of time n−L ≤ t ≤ n−1
and we wish to estimate Yn from these observations.

The relationship between Yn and [X]n−1n−L is linked by
the conditional probability P{[X]n−1n−L|Yn}. This dependency
can be considered as a channel, which links the information
transmitter, Yn, and the information receiver, [X]n−1n−L. There-
fore, the data prediction is a generalized signal detection with
receiving a realization of [X]n−1n−L. The optimal predictor of
Yn, Ŷn([X]n−1n−L), can be derived by minimizing the measure
of error. The most common one is in the mean-square error
sense

E
{[
Yn − Ŷn

(
[X]n−1n−L

)]2}
(2)

With this model, one can immediately identified that, the
Problem 1 is equivalent to the signal detection over a highly
distorted channel, such as a frequency selective channel. The
receiver can access to the information transmitted by Yn up
to the depth (delay in the communication, equivalently) of
observation up to L, i.e., {X}n−1n−L. The goal of signal detection
is to find an optimum estimate of Yn based on the reception
of [X]n−1n−L.

It is well-known that the minimum value of (2), referred to
as the minimum mean-square error or MMSE, is achieved by
the conditional mean estimator:

Ŷn
(
[X]n−1n−L

)
= E

{
Yn | [X]n−1n−L

}
. (3)
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Fig. 1. A general model of prediction. The target is a single Information
Transmitter Yn and the observations is the multiple Information Receiver
[X]n−1

n−L. The statistical dependency of each pair is represented by the channel,
the conditional probability P{[Xi]

n−1
n−L1

|Yn} This is also the general model
of SIMO communications.

Upon the observation of the receiver [X]n−1n−L, one would
like to infer the information bearing transmitter Yn. The
mutual information between [X]n−1n−L and Yn is:

IY (X) , I([X]n−1n−L;Yn) = E

{
log

pYn|[X]n−1
n−L

(Yn | [X]n−1n−L)

pYn(Yn)

}
Or, equivalently, we call this mutual information the informa-
tion transfer to emphasize the idea of modeling data prediction
as a communication of information over the channel.

More generally, we can consider the data prediction with
more than one source; that is, the prediction of Yn with
observation set

{
[Xi]

n−1
n−Li

: i = 1, 2 . . . ,M
}

. Since each pair
of random sequences ({Xi}, {Y }) forms a channel, and thus
a signal detection problem with single-input and multiple-
output, or SIMO, can be formulated to this problem. (see
Fig. 1) Under this network, the total information transfer is
measured by

IY (X1, X2, . . . , XM )

, I
(
[X1]n−1n−L1

, [X2]n−2n−L2
, . . . , [XM ]n−1n−LM

;Yn
) (4)

The following theorem is useful when we need to measure
the information transfer over some specific channels.

Theorem 1. Given the target and the data variables to be of
the linear form; that is, [X]n−1n−L = hYn + Nn, where Nn ∼
N (0,Σ2

n). For any Yn independent of Nn with Var{Yn} ≤ σ2,
we have

I([X]n−1n−L;Yn) ≤ 1

2
log
(
1 + σ2hTΣ−1N h

)
(5)

Proof: Let YG ∼ N (0, σ2), XG = hYG + Nn. It is very
straightforward to show that

I
(
[X]n−1n−L;Yn

)
= D

(
P[X]n−1

n−L|Yn
‖PYG

| P[X]n−1
n−L

)
−D (PY ‖PYG

)

= E {ıYG;XG
(Y,hY +Nn)} −D(PY ‖PYG

)

≤ 1

2
log
(
1 + σ2hTΣ−1N h

) (6)

where D(·‖·) is the relative entropy. The equality holds when
Y ∼ N (0, σ2)

In the following section, we will discuss a practical real-
ization of data prediction based on communication theory.
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We consider the single channel case first, and then give an
extension to the prediction with multiple channels.

III. DATA ANALYSIS OVER ONE CHANNEL

In order to give a computable estimate, we have to consider
a constrained family of estimates. In the following, the linear
estimate will be introduced, and then the selection of depth of
observation will be discussed.

A. Equalization to Data Prediction

In Problem 1, of course, the optimum estimator (in
the MMSE sense) is the conditional mean, Ŷn =
E{Yn+1|[X]n−1n−L}. However, the computation of such esti-
mator can be quite cumbersome unless the problem exhibits
special structure. Furthermore, the determination of the con-
ditional mean generally requires knowledge of the joint dis-
tribution of Yn, Xn−L, . . . , Xn−1, which may be impractical
(or impossible) to obtain in practice.

One way of circumventing these problems is to constrain
the signal of some computationally convenient form, and then
to minimize the MSE over this constrained class. The linear
constraint serves the purpose, in which we consider estimates
Ŷn of the form

Ŷn =

n−1∑
t=n−L

wn,tXt + cn, (7)

where {wn,t}n−1t=n−L and cn are scalars. This setting is equiva-
lent to the MMSE Equalizer in the communication theory [11];
that is, the coefficients {wn,t} are chosen to minimize (2). As
such, finding the optimal filter coefficients {wn,t} becomes a
standard problem in linear estimation. In fact, this problem is a
standard Weiner filtering problem, whose solution is provided
by the following proposition [11]:

Proposition 1. Ŷn minimizes (2) if and only if

E{Yn} = E{Ŷn} (8)

and

E{(Yn − Ŷn)Xl} = 0 ∀ n− L ≤ l ≤ n− 1 (9)

Proof: Please refer to [11].
Proposition 1 gives conditions that are necessary and

sufficient for the set of coefficients {wn,t} and ct to yield
an optimum linear estimator of Yn from [X]n−1n−L. An optimal
linear estimate will always be of the form

Ŷn = E{Yn}+

n−1∑
t=n−L

wn,t(Xt − E{Xt}) (10)

and

σY X(n) = ΣXwn, (11)

where σY X(n) , [cov(Yn, Xn−L), . . . , cov(Yn, Xn−1)],
and ΣY is the covariance matrix of the vector
(Xn−L, . . . , Xn−1)

T. Equation (11) is known as the
Wiener-Hopf equation. Assuming that ΣX is positive definite,

𝑦𝑦�𝑛𝑛 

× × × 

‧‧‧ 

∑ 
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Fig. 2. Communication-inspired Equalizer for data prediction. The equalizer
coefficient wet {wn,t} can be adaptive adjusted to fit the dynamic signals.

we see that the optimum estimator coefficients are given by

wn = Σ−1X σY X(n) (12)

The realization of this equalizer is depicted in Fig. 2. We
can further implement the adaptive equalizer, i.e., adjustable
equalizer coefficients, to fit the dynamic environment better.
The detail is omitted in this paper, and can be referred in [12].

B. Optimum Selection of Tap Numbers
There is an important difference between actual equalizers

in communications and our communication-inspired equalizer
for data prediction: the depth (delays) of observations. In the
communication system, the tap delay is determined by the
nature of fading channel itself, while the depth of observations
in data prediction should be determined under some optimality
constraints. Furthermore, data usually evolves with circum-
stance and they do not persist a consistent statistical properties
for too long. Therefore, it is of importance to consider a
prediction based on a proper depth of observations to avoid
either a heavy load on computations or overfitting in statistics.

Generally, the larger L is, it suggests more information
transfer over the channel. However, since

IY (X) = I(Xn−1;Y ) +

L∑
i=2

I(Xn−i;Y |Xn−1
n−i+1), (13)

it is believed that the latter term is relatively small due to
the weak correlation between Xn−i|Xn−1

n−i+1 and Yn|Xn−1
n−i+1.

An intuitive selection is constrained on the increasing of
information transfer. That is

L∗ = min
L∈N

{
L : I(Xn−L;Y |Xn−1

n−L+1) < ε
}
, (14)

where ε is a predefined threshold. However, this increasing
of information transfer is not always computable. Instead, we
constrain on the maximum increasing of information transfer:

L∗ = min
L∈N

{
L : max I(Xn−L;Y |Xn−1

n−L+1) < ε′
}

= min
L∈N

L :
1

2
log

1 +
σ2
Y |Xn−1

n−L+1

σ2
n

 < ε′,

 (15)

where the analytical form is derived under the linear model
with the power spectrum density of noise σ2

n and the condi-
tional variance σ2

Y |Xn−1
n−L+1

. This is a direct result of Theo-
rem 1, we omit the derivation here.
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Fig. 3. The illustration of information diversity and combining. One can
either combine different estimates of yn from different sources to form a
new estimate, or simply combine all observations via proper selections.

Another way to deal with the selection of depth is the
regularization, which penalizes models with extreme number
of parameters. The original problem (2) can be equivalently
represented as the follow:

wn = arg min
w∈RL

E
{(
Yn −wTXn−1

n−L
)2}

. (16)

By regularization, the object in (16) to be minimized becomes

E
{(
Yn −wTXn−1

n−L
)2}

+ λf(w), (17)

where f(·) is a measure of model complexity of w. Many
type of complexity measure has been shown to have good
and consistent properties, such as Akaike information criterion
(AIC) and minimum description length (MDL) in information
theory [13], or LASSO and Ridge regression in statistics [14].

Remark. In the viewpoint of communication, we do not wish
L to be too large, because such large L implies heavy inter-
symbol interference (ISI) in the channel. We refer the problem
of selection of depth of observation as the mitigation of the
cross-interference of information. It is potentially advanta-
geous over many conventional methods.

IV. DATA PREDICTION OVER MULTIPLE CHANNELS

Consider a process {Yt} to be predict. Suppose we have
M set of data variables that can help us to do prediction.
That is, D = {{X1,t}, {X2,t}, . . . , {XM,t}}. There exhibits a
channel between each pair of data variable and the target. i.e.,
({Yt}, {Xm,t}). This prediction of Yn with multiple sources
is equivalent to the signal detection in SIMO environment.
Thus, the techniques of receiver diversity can be directly
applied to data prediction over Multiple Channels to obtain
the information diversity.

A. Information Diversity and Combining

So far we have established the basic framework for single-
pair data prediction by equalizer. This idea can be easily
extended to the case of multiple information sources. Consider
M sets of data, {[Xm]n−1t=n−Lm

}Mm=1. We aim to find an
estimate of Yn based the the realization of these data. This
problem is equivalent to the signal detection in SIMO. The
techniques of receiver diversity can be directly applied in this
scenario. One can construct an estimate of Yn based on each

set [Xm]n−1n−Lm
respectively, and then combine these estimates

together to form a new estimate of Yn. Such combination
can be done in several ways, and all of them depends on the
measure of prediction performance.

The adoption of linear prediction is based on the believe
that the signal model is

[X]n−1n−L = hnYn +Nn, (18)

where Nn ∼ N (0, σ2
n) at a particular time n. While the

channel coefficients hn is unknown, we can use equalizer and
training sequences to find optimal coefficients of equalizer,
{wn,t}, to detect the signal. We also believe that the power
spectrum of the embedded error in each channel is time-
varying. Therefore, at every time instance, each equalizer
output has different and time-varying performances, and this
combination can leverage this property to obtain better pre-
dictor of Yn.

The performance of each branch can be measured in the
term of prediction error of every time instance; that is,

γm,n = (yn − ŷm,n)2, (19)

which is the unbiased estimator of the power spectral density
of error; i.e., σ2

n. It is also of interest to develop other measure
of performance of each branch, but it is not included in the
scope of this paper. In the following subsections, we introduce
two most common combining schemes: selection combing
(SC) and maximal-ratio combining (MRC).

B. Selection Combining
In selection combining (SC), the combiner outputs the

estimate on the branch with the highest performance.

Ŷn = Ŷm∗,n, (20)

where m∗ = arg maxm γm,n−1, m ∈ {1, . . . ,M}. The
performance of such combination relies on the belief that the
condition of channel exhibits a strong time dependency.

C. Maximal-Ratio Combining
Since we believe that the error process is a time-varying

process, it is somewhat risky and wasteful to select only one
branch and abandon other estimates at each time. An alterna-
tive is that, we choose a convex combination of each branch
to form a new estimate; that is, Ŷn =

∑M
m=1 αm,nŶm,n. The

coefficients {αm} can be determined by the following:

αm,n =
γ−1m,n−1∑M
i=1 γ

−1
i,n−1

(21)

Also, a special case of MRC is the Equal-Gain Combining
(EDG). It assume that both channel are suffered from noises
with the same power spectrum density. The the coefficients
to be multiplied is exactly the same. Generally, this situation
is rare; however, the EGC is still of some values because it
works as robust combining scheme. In the situation that the
channel changes faster than we expect, and the estimate of
noise density is believed to be inaccurate, the EGC is still
valid because it is the average of all the estimate we have.
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D. Equalizer Combining

The equalizer approach of prediction and the diversity
combining can be all regarded as a type of linear prediction.
Besides, unlike the communication system, which is limited
by the antennas, there is no restriction that we have to
separate these observations of different sources. The most
straightforward way to find a linear predictor of Yn is to
construct an estimate of the following form:

Ŷn =

M∑
j=1

n−Lj∑
t=n−1

wj,tXj,t. (22)

In such case, we allow different numbers of taps of different
sources to guarantee that each channel has the least ISI.
This is also a tradeoff between prediction performance and
computation complexity.

The selection of numbers of taps can also be established by
either the minimization of conditional information transfer or
the regularization method.

Generally speaking, this combining should dominate all
methods discussed above, because it is consistent with the
most general MMSE estimate of Yn. However, the price to pay
is the computational complexity. The number of candidates of
model grows exponentially to the number of sources, while
the number of coefficients we have to compute grows with
the product of tap numbers,

∏M
i=1 Li. This fact leads to

the computation of cumbersome auto-correlations and cross-
correlations among all sources and the target variables.

V. EXPERIMENT AND DISCUSSIONS

A. Experiment

In the financial market, it is of particular interest to un-
derstand the mechanism among international stock prices and
the exchange rate of foreign currency. In this experiment,
we select the NASDAQ-composite index (NASDAQ) and the
stock price of Morgan Stanley (MS) from the U.S. stock
market to predict the stock prices of Taiwan Semiconductor
Manufacturing Company (TSMC) and the Hon Hai/Foxconn
Technology Group (FOXCONN) from Taiwan, respectively.
Also the exchange rate of New Taiwan Dollar to U.S. Dollar,
(ExR), is included in the prediction. The period we sampled is
form Jan. 1, 2009 to Aug. 14, 2014, including 1,382 samples
of stock prices and exchange rates in total.

We predict the target stock prices (TSMC and FOXCONN)
by the other data, respectively. Both the prediction over one
channel and multi-channel are conducted. The selection of
depth of observations is done both by the Akaike information
criterion (AIC) and the information transfer (Eq. 15), respec-
tively. Both selections show the consistent results. One of our
result is visualized in Fig. 4. One can see that, even with one-
channel prediction, the accuracy of prediction of equalizer-
based approach is satisfactory. The overall performance of
prediction is shown in Table I and Table II.

In the prediction of FOXCONN, we only use NASDAQ
and ExR, while we adopt NASDAQ, ExR, and MS to predict
the TSMC. Serval observations and insights can be found in
this experiment. We will discuss them in the next subsection.
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Fig. 4. The prediction of TSMC price based on Morgan Stanley (MS) with
equalizer approach. The depth of observations is 1.

TABLE I
DATA PREDICTION OF FOXCONN PRICES

FOXCONN Data Prediction over One Channel
Source Normalized NSE a Depth of Obs.
ExR 0.99 2
NASDAQ 1.00 2

FOXCONN Data Prediction over Multi-Channel
Combining Normalized MSE Depth of Obs. b

EGC 0.99 [2, 2]
SC 0.98 [2, 2]
MRC 0.97 [2, 2]
Eq-MR 0.93 [2, 1]

aThe normalized mean square error for each method. The reference MSE
is 2.8306, which is the MSE of predicting TSMC by NASDAQ.

bThe number of taps corresponding to ExR, NASDAQ, and MS, respec-
tively.

TABLE II
DATA PREDICTION OF TSMC PRICES

TSMC Prediction over One Channel
Source Normalized MSE a Depth of Obs.
ExR 0.99 2
NASDAQ 1.00 2
MS 0.83 1

TSMC Data Prediction over Multi-Channel
Combining Normalized MSE Depth of Obs. b

EGC 0.85 [2, 2, 1]
SC 0.86 [2, 2, 1]
MRC 0.84 [2, 2, 1]
Eq-MR 0.83 [0, 0, 1]

aThe normalized mean square error for each method. The reference MSE
is 2.9409, which is the MSE of predicting TSMC by NASDAQ.

bThe number of taps corresponding to ExR, NASDAQ, and MS, respec-
tively.

B. Discussion

The stock prices we select are believed to have dependency
by our domain knowledge, but the exact influence may be
too complicated such that we cannot explain the mechanism
among them by a proper financial model. For example, we
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believe that ExR has strong impact on the TSMC, and the
observation of ExR can help us to predict TSMC, but we
do not know the exact relation. This problem is referred to
the causal inference in time series [15]. Furthermore, the
determination of the causal relationship, and the model of
prediction are in the research field of knowledge discovery
in machine learning [3].

In our experiment, all three data variables (NASDAQ,
ExR, and MS) works great in the accuracy of predictions of
targets (TSMC and FOXCONN). However, there are serval
interesting observations worth of discussions.

• As what we expected, the Equal-Gain Combining (EGC)
is a robust strategy of information combining. Its per-
formance is simply the average of respecitve prediction.
Generally, Maximal-Ratio Combining (MRC) outper-
forms Selection Combining (SC) and Equal-Gain Com-
bining (EGC).

• The Selection Combining (SC) is not as well as we
expected in the prediction of TSMC. The reason is
that, in the single source test, we can discover that the
prediction of stock price does not relies on a long length
of historical data. This fact indicates that the channel
condition changes very rapidly such that less dependency
can be found between time series. In addition, the predic-
tion based on MS outperforms all other sources, which
make the selection combining meaningless. Likewise the
MRC does not performs well when there exists strong
information transfer (TSMC-MS).

• The Equalizer Combining is competitive to all the other
combining schemes. The selection of depth of observa-
tions is equivalent to model selection in knowledge dis-
covery. However, in our experience, the implementation
complexity and computational cost are heavier than all
the other combinings.

In this experiment, we believe that, given the information
transferred to the MS, the other information on the NASDAQ
and ExR would be not necessary for prediction. Too much
information included in the prediction will only creates ISI
and degrades the performance. It is a straightforward result
since the information transfer (15) conditioning on the MS to
all other sources are close to zero.

Above fact implies that, the information transfer can be an
explanation, even criterion, for knowledge discovery. Not only
can the condition of sufficient information in the data predici-
ton be derived via information theory but also can the criterion
be justified by the experiments. Furthermore, this viewpoint is
rationalized by the information coupling [4], which studies the
geometric structure on the space of probability distributions
and finds a similarity measure for probability measures. Also,
it should be noted that, the equalization of time series is
equivalent to the Kalman filtering with deterministic model
in a more general setting [16], which is one of the standard
approaches in analysis of time series. This work not only
provides a new methodology for data analytics, but also gives
explanations to many useful and well-known techniques in
data analysis.

VI. CONCLUSION

In this paper, we present a totally new understanding of
data prediction in the viewpoint of communication theory
and social networks. A prediction process is identified as a
process of information transfer, which can be quantified by
the mutual information and modeled by the communication
channel. Based on this idea, many techniques, such as equal-
izer, receiver diversity and combining, are directly applied
to predict data. An experiment based on stock prices and
exchange rate is conducted. Many interesting observations can
be found in this experiments, including the relation of our
idea with the most advanced researches in machine learning
and information theory. Of course, more in-depth study on
the communication-inspired techniques of data analysis, such
as combining and information transfer, are still open with
more opportunities in statistical data processing and learning,
where we wish this paper to be a cornerstone toward a new
technology.
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